skip to main content


Search for: All records

Creators/Authors contains: "Matthíasson, Kristján"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coincidence ion pair production (I + + I − ) (cipp) spectra of I 2 were recorded in a double imaging coincidence experiment in the one-photon excitation region of 71 600–74 000 cm −1 . The I + + I − coincidence signal shows vibrational band head structure corresponding to iodine molecule Rydberg states crossing over to ion-pair (I + I − ) potential curves above the dissociation limit. The band origin ( ν 0 ), vibrational wavenumber ( ω e ) and anharmonicity constants ( ω e x e ) were determined for the identified Rydberg states. The analysis revealed a number of previously unidentified states and a reassignment of others following a discrepancy in previous assignments. Since the ion pair production threshold is well established, the electric field-dependent spectral intensities were used to derive the cutoff energy in the transitions to the rotational levels of the 7pσ(1/2) ( v ′ = 3) state. 
    more » « less
  2. null (Ed.)
    Coincidence ion pair production (cipp) spectra of F 2 were recorded on the DELICIOUS III coincidence spectrometer in the one-photon excitation region of 125 975–126 210 cm −1 . The F + + F − signal shows a rotational band head structure, corresponding to F 2 Rydberg states crossing over to the ion pair production surface. Spectral simulation and quantum defect analysis allowed the characterization of five new molecular Rydberg states (F 2 **): one Π and four Σ states. The lowest-energy Rydberg state spectrum observed ( T 0 = 125 999 cm −1 ) lacked some of the predicted rotational structure, which allowed an accurate determination of the ion pair production threshold of 15.6229 4 ± 0.0004 3 eV. Using the well-known atomic fluorine ionization energy and electron affinity, this number leads to a ground state F–F dissociation energy of 1.6012 9 ± 0.0004 4 eV. Photoelectron photoion coincidence (PEPICO) experiments were also carried out on F 2 and the dissociative photoionization threshold to F + + F was determined as 19.0242 ± 0.0006 eV. Using the atomic fluorine ionization energy, this can be converted to an F 2 dissociation energy of 1.6013 2 ± 0.0006 2 eV, further confirming the cipp-derived value above. Because the two experiments were independently energy-calibrated, they can be averaged to 1.6013 0 ± 0.0003 6 eV and this value can be used to derive the fluorine atom's 0 K heat of formation as 77.25 1 ± 0.01 7 kJ mol −1 . This latter is in excellent agreement with the latest Active Thermochemical Table (ATcT) value but improves its accuracy by almost a factor of three. 
    more » « less